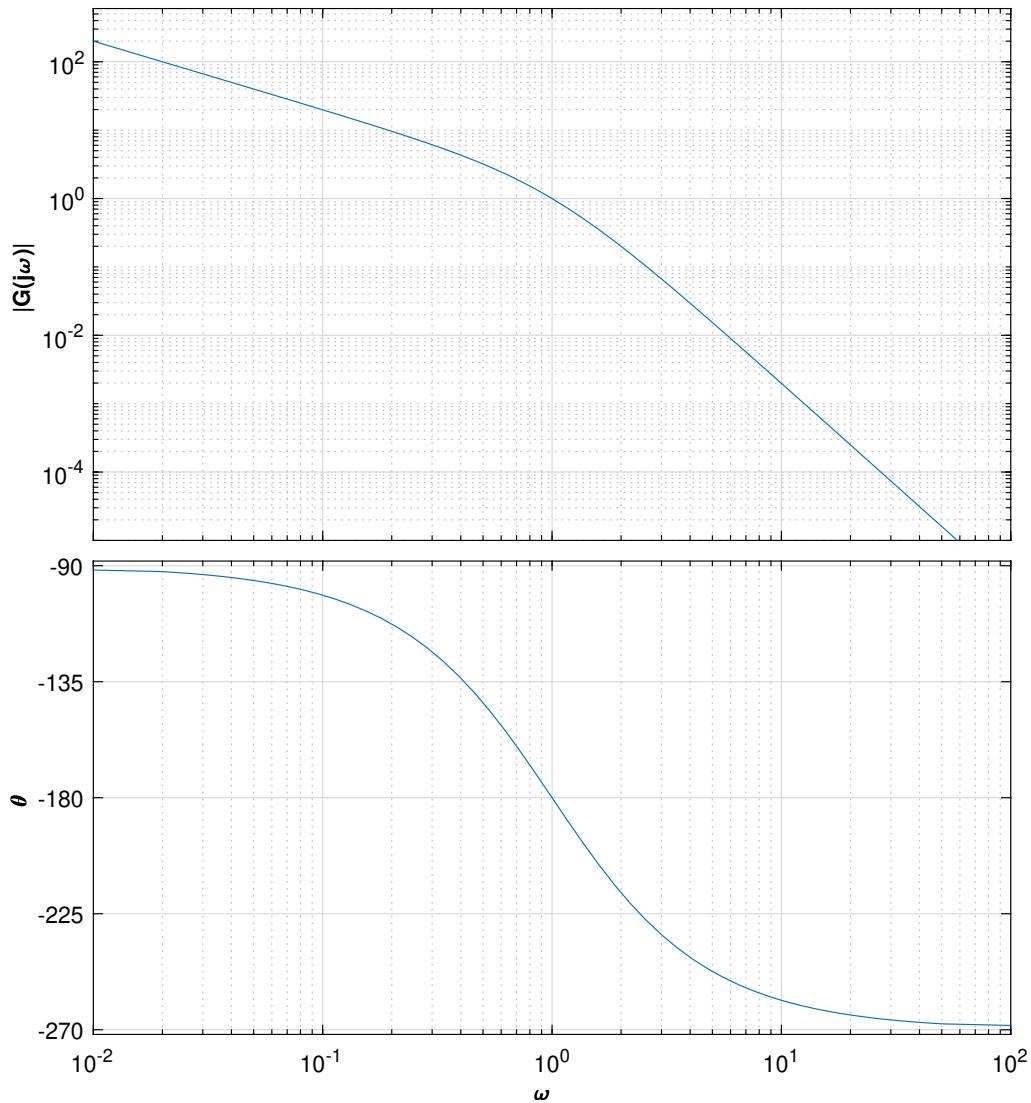


ME-221
PROBLEM SET 12

Problem 1


Consider the system described by the following transfer function.

$$G(s) = \frac{6}{(s+1)^2(s+2)}$$

Sketch the Bode diagram first and use the magnitude and phase information to sketch the Nyquist plot.

Problem 2

Consider a dynamical system with the following Bode Diagram.

- Calculate the transfer function of the system $G(s)$. What is the order of the system and where are the poles located? Find the static gain and the time constant of the system.
- Sketch the Nyquist plot.

c) Imagine that we want to design a first order filter (denoted by the transfer function $F(s)$) with a zero at -1 . The filtered system is expected to have a magnitude of 1 and phase shift of -145° at $\omega = 1$ rad/s. Find the gain and the time constant of $F(s)$ that would lead to the desired specifications. Note that, the transfer function of the filtered system $G_f(s)$ is simply the product of the transfer function of the original system and the transfer function of the first order filter (i.e. $G_f(s) = G(s)F(s)$).

Problem 3

Consider a mechanical system with the following transfer function.

$$G(s) = \frac{2(s+1)}{10s+1} e^{-2s}$$

- a) Sketch the Bode plot (magnitude + phase).
- b) Calculate the output of the system for the input $u(t) = 10\sin(t)$ using the Bode plot.
- c) Sketch the Nyquist plot with and without the e^{-2s} term.
- d) We would like to design a first order filter $F(s) = \frac{\alpha s + 1}{s + 1}$ in a way that the new system with the transfer function $G'(s) = G(s) \times F(s)$ has a phase shift of $\phi = -120^\circ$ at $\omega = 1$ rad/s. Find the value of α .

Problem 4

Determine the effect of the parameter τ on the magnitude plot of the following transfer function.

$$G(s) = \frac{\tau s + 1}{(s^2 + 4.8s + 64)(s^2 + 36s + 8100)}$$

Is it possible to choose a value for τ to increase the gain at low frequencies?

Problem 5

Explain the differences between the Bode and Nyquist plots of the following two transfer functions:

$$G_1(s) = \frac{1}{(s^2 + 0.5s + 1)} \quad G_2(s) = \frac{1}{(s^2 + 2s + 1)}$$